

Caractéristiques techniques

' Blomedical

RaySafe 452 Appareil de Mesurage de Radiation

Un appareil. Une infinité de possibilités.

Le RaySafe 452.

Aussi polyvalent que vous.

Le RaySafe 452 est un appareil de mesurage des radiations qui mesure les radiations ionisantes dans une variété de situations, notamment la détection des fuites d'isotopes et le mesurage des rayonnements dispersés d'appareils à rayons X et d'accélérateurs linéaires.

Ceci signifie moins de dépenses, plus d'efficacité et plus de rapidité. Simplement mettre l'appareil en marche et dans quelques secondes vous êtes prêts à mesurer. Le RaySafe 452 n'a pas besoin de corrections ni de paramétrage manuel et vous permet de vous concentrer sur la protection contre le rayonnement plutôt que sur la configuration.

L'interface intuitive affiche tous les paramètres sur une seule page. Toutes les données de mesurage sont stockées automatiquement, et le logiciel PC RaySafe View inclus facilite le transfert de données pour une analyse plus approfondie et pour le stockage de données.

Un appareil pour toutes les situations, c'est moins à transporter, moins à apprendre et moins à gérer. Ce qui se traduit par moins de dépenses, plus d'efficacité et un gain de temps substantiel.

Technologie

La technologie de mesurage du RaySafe 452 est basée sur la combinaison d'un groupe de capteurs en silicone et d'un compteur Geiger Müller type Pancake. L'appareil a deux couvercles/capteurs interchangeables (selon le modèle) pour changer entre air kerma, l'équivalence de l'ambiance et le compteur. Cette conception donne un appareil polyvalent présentant en même temps une réponse énergétique large et plate, une sensibilité élevée et un temps de réponse réduit.

	R / Gy / rad	Sv / rem	cps / cpm
RaySafe 452	•	•	•
RaySafe 452 Kerma dans l'air	•		
RaySafe 452 Ambient		•	

Modèles

Le RaySafe 452 est proposé en trois modèles différents.

Applications caractéristiques

- Rayonnement de fuite par les tubes
- Rayonnement de fuite par les murs
- Rayonnement diffusé dans la salle
- Mesurages de la contamination
- Radiation dans l'environnement
- Essais non destructifs

Caractéristiques clés

- Large gamme d'applications
- Conforme à la norme CEI 60846-1
- IP 64 (étanche à la poussière et aux projections d'eau)
- Stockage automatique des données
- Connectivité logiciel PC
- Chargement sur câble USB
- Mesure les rayons alpha, bêta, gamma, X
- Réglage du seuil d'alarme
- Conçu pour les applications en intérieur et en extérieur

Caractéristiques techniques

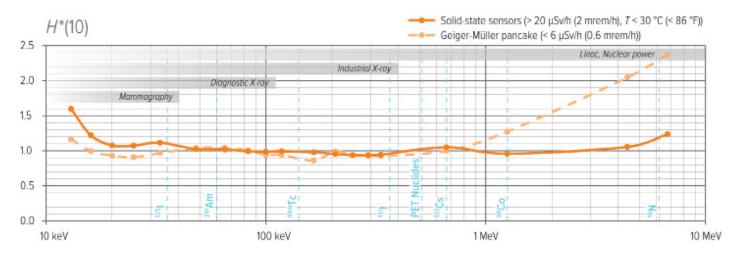
Généralités

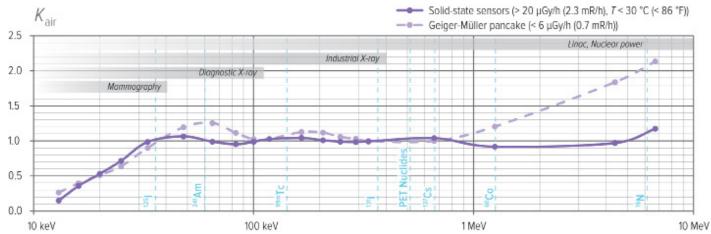
Norme de sécurité	Conforme à la norme CEI 61010-1:2010, degré de pollution 2	
Norme de l'appareil de contrôle du rayonnement	Conforme à la norme CEI 60846-1:2009, sauf EMC qui est conforme à la norme CEI 61326- 1:2012, et sauf le niveau sonore de l'alarme	
Dimensions	250 x 127 x 83 mm	
Poids	0,8 kg	
Écran	LCD couleurs, 240 x 400 pixels, lisible en plein soleil, rétroéclairé	
Alarme de taux	65 dB(A) à 30 cm	
Température de fonction- nement	De -20 à +50 °C	
Température de stockage	De -30 à +70 °C	
Température de charge de la batterie	De +10 à +40 °C	
Pression atmosphérique	De 70 à 107 kPa, altitude jusqu'à 3 000	
Code IP	IP64 (étanche à la poussière et aux projections d'eau), conformément à la norme CEI 60529:1989-2013, avec couvercle monté, et aucun dispositif connecté au port USB	
Humidité, sans couvercle	Humidité relative < 90 %, sans condensation	
Autonomie de la batterie	Jusqu'à 100 h	
Batterie	Intégrée, rechargeable, lithium-ion, 2550 mAh	
Port	Micro USB (5 V CC, 1,3 A) pour la communication et la charge	
Montage	Filetage de trépied standard 1/4" sur poignée	
Stockage de données	4 000 mesures stockées et 10 jours de journal de taux de dosage avec résolution 1 s	
Logiciel	RaySafe View (pour contrôle à distance, analyse et exportation des données)	

Radiologie

Équivalent de dose ambiante, <i>H</i> *(10)			
Plage	0 μSv/h – 1 Sv/h (0 μrem/h – 100 rem/h)		
Résolution de taux	0.01 μSv/h (1 μrem/h) ou 3 chiffres		
Résolution de dose	0.1 nSv (0.01 μrem) ou 3 chiffres		
Gamme d'énergie	16 keV – 7 MeV		
Réponse d'énergie ¹	> 20 μSv/h (2 mrem/h) et <i>T</i> < 30 °C (86 °F)	±15 %, 20 keV – 5 MeV ±25 %, < 20 keV ou > 5 MeV	
	sinon	±20 %, 20 keV – 1 MeV –25 % – +150 %, < 20 keV ou > 1 MeV	
Durée d'impulsion minimale des rayons X ²	5 ms à <i>T</i> < 30 °C (86 °F)		
Fréquence minimale du linac ^{2,3}	100 Hz à <i>T</i> < 30 °C (86 °F)		
Temps de réponse des taux	~2 s pour détecter une augmentation de 0.2 ou 2 μGh/h (20 à 200 μrem/h)		
Gamme d'énergie CEI 60846-1 ⁴	20 keV – 2 MeV, angle d'incidence ±45°		
CEI 60846-1 Echelle de taux de dosage ⁴	1 μSv/h – 1 Sv/h (100 μrem/h – 100 rem/h), non linéarité < ±10 %		
CEI 60846-1 Echelle de	1 μSv – 24 Sv (100 μrem – 2.4 krem), coefficient		
dosage ⁴	de variation < 3 %		
Unités	Sv rem (1 rem = 1/100 Sv)		

Kerma dans l'air, K _{air}			
Plage	0 μGy/h – 1 Gy/h (0 μR/h – 114 R/h)		
Résolution de taux	0,01 μGy/h (1 μR/h) ou 3 chiffres		
Résolution de dose	0,1 nGy (0.01 μR) ou 3 chiffres		
Gamme d'énergie	30 keV – 7 MeV		
Réponse d'énergie ¹	> 20 μGy/h (2.3 mR/h) et T < 30 °C (86 °F)	±15 %, 30 keV – 5 MeV ±25 %, 5 MeV – 7 MeV	
	sinon	±30 %, 30 keV – 1 MeV –25 % – +120 %, 1 MeV – 7 MeV	
Durée d'impulsion minimale des rayons X ²	5 ms à <i>T</i> < 30 °C (86 °F)		
Fréquence minimale du linac ^{2,3}	100 Hz à <i>T</i> < 30 °C (86 °F)		
Temps de réponse des taux	$^{\sim}2$ s pour détecter une augmentation de 0.2 ou 2 μ Gh/h (23 à 230 μ R/h)		
Unités	Gy rad (1 rad = 1/100 Gy) R (1 R = 1/114.1 Gy)		


Énergie photon moyenne, $ar{E}$		
Plage	20 keV – 600 keV	
Incertitude	10 % à < 100 keV, 20 % sinon	
Définition norme	ISO 4037-1:2019	
Taux de dosage minimal ⁵	20 μSv/h (2 mrem/h) ou 20 μGy/h (2.3 mR/h), à T < 30 °C (86 °F)	


Compteur (α, β, γ)				
Type de détecteur	Geiger Müller, type Pancake			
Fenêtre	Mica, 1,5 – 2 mg/cm ²			
Zone sensible	15.55 cm², derrière grillage acier ouvert 79 %			
Plage	0 cps - 20 kcps (0 cpm - 1.2 Mcpm)			
Résolution de taux	0.1 cps (1 cpn	0.1 cps (1 cpm) ou 3 chiffres		
Résolution compteur	1 comptage ou 3 chiffres			
Correction temps mort	Automatique, linéarité comprise entre -10 % et +30 %			
Fond typique à 0,1 µSv/h	0,5 cps (30 cpm)			
Sensibilité gamma typique,	6 cps / μGy/h (3000 cpm / mR/h)			
Temps de réponse des taux	~2 s pour détecter un changement de 1 à 10 cps (60 à 600 cpm)			
Unités	cps cpm (1 cpm = 1/60 cps)			
Sensibilité émissions 2π ⁶	Radionu- cléide	Dégradation (E _{max})	Efficacité typique	
	¹⁴ C	β ⁻ (0,16 MeV)	15 %	
	⁶⁰ Co	β ⁻ (0,32 MeV)	31 %	
	³⁶ CI	β ⁻ (0,71 MeV)	43 %	
	⁹⁰ Sr / ⁹⁰ Y	β ⁻ (0,55 / 2,28 MeV)	49 %	
	²³⁹ Pu	α (5,16 MeV)	26 %	
	²⁴¹ Am	α (5,49 MeV)	26 %	

- 1. L'instrument utilise un compteur Geiger Müller de type Pancake pour les taux faibles et un groupe de capteurs à semi-conducteur pour les taux élevés. Le taux auquel les capteurs à semi-conducteur sont pleinement engagés augmente progressivement en fonction de la température, pour les températures supérieures à 30 °C.
- 2. Limite où la réponse se situe à ±20 % de la réponse à rayonnement continu. Au-delà de 30 °C, la capacité de l'instrument à gérer les taux d'impulsions de Linac faibles et les impulsions de rayons X courts réduit progressivement avec l'augmentation de la température.
- 3. Fait référence à la fréquence de répétition des impulsions de micro-ondes des accélérateurs linéaires médicaux typiques. Chaque impulsion a une durée type de quelques μs .
- 4. Gammes où l'instrument satisfait aux exigences de la norme CEI 60846-1:2009.
- 5. Au-dessus de 30 °C, le taux de dosage minimum augmente progressivement avec l'augmentation de la température.
- 6. Mesuré à 3 mm de distance entre le boîtier des instruments (sans couvercle) et les sources de la classe 2 de la grande surface selon ISO 8769:2010.

Réponse énergétique type

Informations pour la commande

Le système comprend

Instrument avec couvercles montés (selon le modèle). Alimentation et prises, câble USB 5 m, versions imprimées du manuel d'utilisation et du guide rapide, certificat d'étalonnage, boîte en carton doublée de mousse.

Accessoires en option

Boîtier résistant doublé mousse

Rendez-vous sur **raysafe.com** ou **flukebiomedical.com** pour trouver des vidéos, le manuel de l'utilisateur, le logiciel RaySafe View et d'autres informations.

Programme d'entretien

Le Programme d'entretien RaySafe garantit des dépenses annuelles prévisibles pour que votre instrument reste aussi performant qu'au premier jour. Ce programme d'entretien proposé en option permettra à votre appareil de mesurage RaySafe 452 de fonctionner avec précision et efficacité grâce à des étalonnages et des contrôles annuels, et prolonge la garantie matérielle de l'instrument.

Engagement règlementaire de Fluke Biomedical

En tant que fabricant d'appareils de tests médicaux, nous reconnaissons et respectons un certain nombre de normes de qualité et de certifications lors du développement de nos produits. Nos dispositifs médicaux sont certifiés ISO 9001 et ISO 13485 et nos produits :

- sont certifiés CE chaque fois que nécessaire
- disposent des certificats d'étalonnage entièrement homologués PTB
- sont certifiés UL, CSA, ETL chaque fois que nécessaire
- sont certifiés NRTL chaque fois que nécessaire.
 Par exemple : UL, CSA, ETL, MET
- sont conformes aux directives de la NRC, chaque fois que nécessaire
- disposent d'une certification environnementale chaque fois que nécessaire.
 Par exemple : RoHS, REACH

Fluke Biomedical.

Un partenaire de confiance pour les mesures qui comptent.

Fluke Biomedical

6920 Seaway Blvd, Everett, WA 98203 U.S.A.

Pour plus d'informations, n'hésitez pas à nous contacter :

(800) 850-4608 ou Fax (440) 349-2307 E-mail : sales@flukebiomedical.com Site Web : www.flukebiomedical.com

©2024 Fluke Biomedical. Les caractéristiques sont susceptibles d'être modifiées sans préavis. Imprimé aux États-Unis 6/2024 6011930b-fr

Aucune modification de ce document n'est autorisée sans l'autorisation écrite préalable de Fluke Corporation.